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Chapter 1

Univariate GARCH Models

1.1 Conditional Mean Specification

Let us consider a univariate time series yt. If Ωt−1 is the information set at time t− 1,
we can define its functional form as:

yt = µt + εt, (1.1)

where µt = E(yt|Ωt−1) is the conditional mean of yt and εt is the disturbance term (or
unpredictable part), with E (εt) = 0 and E (εtεs) = 0,∀ t 6= s.

Two of the most famous specifications of the conditional mean are the Autoregres-
sive (AR) and Moving Average (MA) models. Combining these two processes, we
obtain the ARMA(n, s) process

Ψ (L) (yt − µ) = Θ (L) εt, (1.2)

where L is the lag operator so that Lkyt = yt−k and therefore Ψ (L) = 1 −
n∑
i=1

ψiL
i

and Θ (L) = 1 +
s∑
j=1

θjL
j .

1.2 Conditional Variance Specification

Estimating (1.1) by Ordinary Least Square (OLS) would require assuming the variance
of the error term to be constant over time, i.e., εt = σzt, where zt is an i.i.d. process
with mean 0 and unit variance. This assumption in not realistic for most financial time
series observed at the daily or weekly frequency. In the next sections, we discuss several
specifications allowing to introduce dynamics in the conditional variance (denoted σ2

t ).

1.2.1 GARCH Model

The Generalized ARCH (GARCH) model of Bollerslev (1986) is based on an infinite
ARCH specification and it allows to reduce the number of estimated parameters by
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2 Chapter 1 Univariate GARCH Models

imposing nonlinear restrictions on them. The GARCH (p, q) model can be expressed
as:

σ2
t = ω +

q∑
i=1

αiε
2
t−i +

p∑
j=1

βjσ
2
t−j . (1.3)

Using the lag (or backshift) operator L, the GARCH (p, q) model becomes:

σ2
t = ω + α(L)ε2

t + β(L)σ2
t ,

with α(L) = α1L+ α2L
2 + . . .+ αqL

q and β(L) = β1L+ β2L
2 + . . .+ βpL

p.

1.2.2 EGARCH Model

The Exponential GARCH (EGARCH) model, originally introduced by Nelson (1991),
is re-expressed in Bollerslev and Mikkelsen (1996) as follows:

log σ2
t = ω + [1− β(L)]

−1
[1 + α(L)]g(zt−1). (1.4)

The value of g(zt) depends on several elements. Nelson (1991) notes that, “to
accommodate the asymmetric relation between stock returns and volatility changes (...)
the value of g(zt) must be a function of both the magnitude and the sign of zt”. That is
why he suggests to express the function g(.) as

g(zt) ≡ γ1zt︸︷︷︸
sign effect

+ γ2[|zt| − E|zt|]︸ ︷︷ ︸
magnitude effect

(1.5)

E|zt| depends on the assumption made on the unconditional density of zt.

E (|zt|) =
√

2/π for the normal distribution, E(|zt|) = 4ξ2

ξ+1/ξ

Γ( 1+υ
2 )
√
υ−2

√
πΓ(υ/2)

for an
asymmetric Student-t (set ξ = 1 for the symmetric Student-t). Note that the use of a
log transformation of the conditional variance ensures that σ2

t is always positive.

1.2.3 GJR Model

This popular model is proposed by Glosten, Jagannathan, and Runkle (1993). Its gen-
eralized version is given by:

σ2
t = ω +

q∑
i=1

(αiε
2
t−i + γiS

−
t−iε

2
t−i) +

p∑
j=1

βjσ
2
t−j , (1.6)

where S−t is a dummy variable that takes the value 1 when εt is negative and 0 other-
wise. In this model, it is assumed that the impact of ε2

t on the conditional variance σ2
t

is different when εt is positive or negative.
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A nice feature of the GJR model is that the null hypothesis of no leverage effect
is easy to test. Indeed, γ1 = . . . = γq = 0 implies that the news impact curve is
symmetric, i.e. past positive shocks have the same impact on today’s volatility as past
negative shocks.

1.2.4 APARCH Model

This model has been introduced by Ding, Granger, and Engle (1993). The APARCH
(p, q) model can be expressed as:

σδt = ω +

q∑
i=1

αi (|εt−i| − γiεt−i)δ +

p∑
j=1

βjσ
δ
t−j , (1.7)

where δ > 0 and −1 < γi < 1 (i = 1, ..., q).
The parameter δ plays the role of a Box-Cox transformation of σt while γi reflects

the so-called leverage effect.
The APARCH includes seven other ARCH extensions as special cases:

• The ARCH of Engle (1982) when δ = 2, γi = 0 (i = 1, . . . , p) and βj = 0 (j =

1, . . . , p).
• The GARCH of Bollerslev (1986) when δ = 2 and γi = 0 (i = 1, . . . , p).
• Taylor (1986)/Schwert (1990)’s GARCH when δ = 1, and γi = 0 (i = 1, . . . , p).
• The GJR of Glosten, Jagannathan, and Runkle (1993) when δ = 2.
• The TARCH of Zakoian (1994) when δ = 1.
• The NARCH of Higgins and Bera (1992) when γi = 0 (i = 1, . . . , p) and βj =

0 (j = 1, . . . , p).
• The Log-ARCH of Geweke (1986) and Pentula (1986), when δ → 0.

1.2.5 IGARCH Model

In many high-frequency time-series applications, the conditional variance estimated
using a GARCH(p, q) process exhibits a strong persistence, that is:

p∑
j=1

βj +

q∑
i=1

αi ≈ 1.

The IGARCH(p, q) model of Engle and Bollerslev (1986) is nothing but a

GARCH(p, q) that imposes the strong constrain
p∑
j=1

βj +
q∑
i=1

αi = 1 so that p + q − 1

parameters are estimated, the last one being obtained using the above constrain.
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1.2.6 RiskMetricsTM

In October 1994, the risk management group at J.P. Morgan released a technical docu-
ment describing its internal market risk management methodology (J.P.Morgan, 1996).
This methodology, called RiskMetricsTM soon became a standard in the market risk
measurement due to its simplicity.

Basically, the RiskMetricsTM model is an IGARCH(1,1) model where the ARCH
and GARCH coefficients are fixed.

The model is given by:

σ2
t = ω + (1− λ)ε2

t−1 + λσ2
t−1, (1.8)

where ω = 0 and λ is generally set to 0.94 with daily data and to 0.97 with weekly data
but this value can obviously be changed by the user.

1.2.7 Fractionally Integrated Models

Volatility tends to change quite slowly over time, and, as shown in Ding, Granger, and
Engle (1993) among others, the effects of a shock can take a considerable time to decay.
In their study of the daily S&P500 index, they find that the squared returns series has
positive autocorrelations over more than 2,500 lags (or more than 10 years !). Therefore
the distinction between stationary and unit root processes seems to be far too restrictive.
Indeed, the propagation of shocks in a stationary process occurs at an exponential rate
of decay (so that it only captures the short-memory), while for an unit root process the
persistence of shocks is infinite.

To mimic the behavior of the correlogram of the observed volatility, Baillie, Boller-
slev, and Mikkelsen (1996) (hereafter denoted BBM) introduce the Fractionally Inte-
grated GARCH (FIGARCH) model.

The conditional variance of the FIGARCH (p, d, q) is given by:

σ2
t = ω[1− β(L)]

−1︸ ︷︷ ︸
ω∗

+
{

1− [1− β(L)]
−1
φ(L)(1− L)d

}
︸ ︷︷ ︸

λ(L)

ε2
t , (1.9)

or σ2
t = ω∗ +

∑∞
i=1 λiL

iε2
t = ω∗ + λ(L)ε2

t , with 0 ≤ d ≤ 1. Setting φ1 = 0 gives
the condition for the FIGARCH (1, d, 0). λ (L) is an infinite summation which, in
practice, has to be truncated. BBM propose to truncate λ (L) at 1000 lags and replace
the unobserved ε2

t ’s by the empirical counterpart of E(ε2
t ), i.e. 1/T

∑T
t=1 ε̂

2
t .

1.2.8 Generalized Autoregressive Score (GAS) Models

It is well known that financial series occasionally exhibit large changes, also known
as jumps. Several authors have shown that these jumps affect future volatility less
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than what standard volatility models would predict. Many volatility models, such as
GARCH, are based on the assumption that each return observation has the same rela-
tive impact on future volatility, regardless of the magnitude of the return. This assump-
tion is at odds with an increasing body of evidence indicating that the largest return
observations have a relatively smaller effect on future volatility than smaller shocks.

To overcome this problem, Harvey and Chakravarty (2008) and Creal, Koopman,
and Lucas (2012) independently proposed a novel way to deal with large returns in a
GARCH context. Their models rely on a potentially non-normal distribution for the
innovations (zt) and a GARCH-type equation for the conditional variance derived from
the conditional score of the assumed distribution with respect to the second moment.

The general framework is as follows. Let ψt denote a time-varying parame-
ter vector (e.g. the conditional variance σ2

t or its log) and xt a possible vector of
exogenous variables, at time t. Defining Yt = {ε1, . . . , εt} , {Ψt = ψ1, . . . , ψt},
and Xt = {x1, . . . , xt}. Yt is a (t × 1) vector with the demeaned returns up to
time t. It is assumed that εt is generated by the very general observation density:
f(εt|ψt,Ψt−1, Yt−1, Xt; θ), t = 1, . . . , T . If εt = σtzt, zt ∼ N(0, 1) and ψt = σ2

t ,
f(εt|ψt,Ψt−1, Yt−1, Xt; θ) = f(εt|σ2

t ; θ) = 1√
2πσ2

t

exp(− ε2t
2σ2
t
).

For a GAS(1,1) model, the updating equation for the time-varying parameters ψt is
the well-known autoregressive updating function: ψt = ω+B1ψt−1 +A1κt−1. Harvey
and Chakravarty (2008) and Creal, Koopman, and Lucas (2012) propose to update the
time-varying parameters with κt = St5t. 5t is the score with respect to the parameter
ψt, i.e. 5t = ∂ log f(yt|ψt,Ψt−1, Yt−1, Xt; θ)/∂ψt and St is a time dependent scaling
matrix.

Note that for a standard Normal-GARCH model, i.e. if εt ∼ N(0, σ2
t ), and ψt = σ2

t

5t = ∂ − 0.5
(
log σ2

t + ε2tσ
−2
t

)
/∂σ2

t = 0.5(z2
t − 1)σ2

t . Therefore, a GARCH(1,1)
model corresponds to a Normal-GAS(1,1) model (i.e. GAS(1,1) with zt ∼ N(0, 1))
with St = 2, A1 = α1 and B1 = α1 + β1.

Indeed, let us rewrite the GARCH(1,1) model as follows:

σ2
t = ω + α1 z

2
t−1σ

2
t−1︸ ︷︷ ︸

ε2t−1

+β1σ
2
t−1 (1.10)

or equivalently

σ2
t = ω + α1 (z2

t−1 − 1)︸ ︷︷ ︸
ut−1

σ2
t−1 + (α1 + β1)︸ ︷︷ ︸

B1

σ2
t−1. (1.11)

In the above equation ut = z2
t−1 − 1 is proportional to the score of the conditional

distribution of εt with respect to σ2
t−1 and therefore is a natural choice of updating

scheme in a ‘Newton-Raphson’ sense.
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The only difference between Harvey and Chakravarty (2008) and Creal, Koopman,
and Lucas (2012) is on St. Creal, Koopman, and Lucas (2012) discuss different choices
for St and recommend using St = 1 or St = (Et−1 5t 5′t)−1 while Harvey and
Chakravarty (2008) set St = 2. XlQuant follows Harvey and Chakravarty (2008) and
sets St = 2.

The specification of the GAS(1,1) model of Harvey and Chakravarty (2008) com-
bined with a normal, and Student-t is given below:

σ2
t = ω + α1ut−1σ

2
t−1 + ψ1σ

2
t−1, (1.12)

where

ut = z2
t − 1 if zt ∼ N(0, 1); (1.13)

ut =
(ν + 1)z2

t

ν − 2 + z2
t

− 1 if zt ∼ t(0, 1, ν). (1.14)

(1.15)

Harvey and Chakravarty (2008) call the above GAS model with a T distribution
‘Beta-t-GARCH’ because, for this distribution, (ut+1)/(ν+1) has a Beta distribution.
Note that the specification of the GAS models in Harvey and Chakravarty (2008) and
Harvey and Succarat (2012) slightly differ from those implemented in XlQuant because
the score is derived for standardized distributions (i.e. E(zt) = 0 and V (zt) = 1) and
not just centered distributions (i.e. E(zt) = 0 but V (zt) 6= 1).

1.2.9 Forecasting the Conditional Variance of GARCH-type models

In the simple GARCH(p, q) case, the optimal h-step-ahead forecast of the conditional
variance, i.e. σ̂2

t+h|t is given by:

σ2
t+h|t = ω̂ +

q∑
i=1

α̂iε
2
t+h−i|t +

p∑
j=1

β̂jσ
2
t+h−j|t, (1.16)

where ε2
t+i|t = σ2

t+i|t for i > 0 while ε2
t+i|t = ε2

t+i and σ2
t+i|t = σ2

t+i for i ≤ 0.
Equation (1.16) is usually computed recursively, even if a closed form solution of σ2

t+h|t
can be obtained by recursive substitution in Equation (1.16).

Similarly, one can easily obtain the h-step-ahead forecast of the conditional variance
of an ARCH, IGARCH and FIGARCH model. By contrast, for thresholds models, the
computation of out-of-sample forecasts is more complicated. Indeed, for EGARCH,
GJR and APARCH models, the assumption made on the innovation process may have
an effect on the forecast (especially for h > 1).
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For instance, for the GJR (p, q) model, we have

σ̂2
t+h|t = ω̂ +

q∑
i=1

(α̂iε
2
t−i+h|t + γ̂iS

−
t−i+h|tε

2
t−i+h|t) +

p∑
j=1

β̂jσ
2
t−j+h|t. (1.17)

When γi = 0 for all i, we obtain the forecast of the GARCH model. Otherwise,
S−t−i+h|t has to be computed. Note first that S−t+i|t = S−t+i for i ≤ 0. However, when
i > 0, S−t+i|t depends on the choice of the distribution of zt. When the distribution of zt
is symmetric around 0 (for the Gaussian, Student), the probability that εt+i is negative
is S−t+i|t = 0.5. If zt is (standardized) skewed-Student distributed with asymmetry
parameter ξ and degree of freedom υ, S−t+i|t = 1

1+ξ2 since ξ2 is the ratio of probability
masses above and below the mode.

For the APARCH (p, q) model,

σ̂δt+h|t = E
(
σδt+h|Ωt

)
= E

ω̂ +

q∑
i=1

α̂i (|εt+h−i| − γ̂iεt+h−i)δ̂ +

p∑
j=1

β̂jσ
δ̂
t+h−j | Ωt


= ω̂ +

q∑
i=1

α̂iE
[
(εt+h−i − γ̂iεt+h−i)δ̂|Ωt

]
+

p∑
j=1

β̂jσ
δ̂
t+h−j|t, (1.18)

where E
[
(εt+k − γ̂iεt+k)δ̂|Ωt

]
= κiσ

δ̂
t+k|t, for k > 1 and κi = E (|z| − γiz)δ̂ .

For the EGARCH (p, q) model,

log σ̂2
t+h|t = E

(
log σ2

t+h|Ωt
)

= E

{
ω̂ +

[
1− β̂(L)

]−1

[1 + α̂(L)]ĝ(zt+h−1) | Ωt
}

=
[
1− β̂(L)

]
ω̂ + β̂(L) log σ̂2

t+h|t + [1 + α̂(L)]ĝ(zt+h−1|t),(1.19)

where ĝ(zt+k|t) = ĝ(zt+k) for k ≤ 0 and 0 for k > 0.
For the GAS(p, q) model,

σ2
t+h|t = ω̂ +

q∑
i=1

α̂iut+h−i|tσ
2
t+h−i|t +

p∑
j=1

φ̂jσ
2
t+h−j|t, (1.20)

where ut+i|tσ2
t+i|t = 0 for i > 1.

1.3 Estimation

Estimation of GARCH-type models is commonly done by maximum likelihood so that
one has to make an additional assumption about the innovation process zt, i.e. choosing
a density function D(0, 1) with a mean 0 and a unit variance.
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Three distributions are available: the usual Gaussian (normal) distribution, the
Student-t distribution, and the skewed-Student distribution (which is available for all
models but the GAS model).

The logic of ML is to interpret the density as a function of the parameter set, condi-
tional on a set of sample outcomes. This function is called the likelihood function.

If we express the mean equation as in Equation (1.1) and εt = ztσt, the log-
likelihood function of the standard normal distribution is given by:

Lnorm = −1

2

T∑
t=1

[
log (2π) + log

(
σ2
t

)
+ z2

t

]
, (1.21)

where T is the number of observations.
For a Student-t distribution, the log-likelihood is:

LStud = T

{
log Γ

(
υ + 1

2

)
− log Γ

(υ
2

)
− 1

2
log [π(υ − 2)]

}
− 1

2

T∑
t=1

[
log(σ2

t ) + (1 + υ) log

(
1 +

z2
t

υ − 2

)]
, (1.22)

where υ is the degrees of freedom, 2 < υ ≤ ∞ and Γ(.) is the gamma function.
The main drawback of the previous densities is that even if they may account for fat

tails, they are symmetric. Skewness and kurtosis are important in financial applications
in many respects (in asset pricing models, portfolio selection, option pricing theory or
Value-at-Risk among others).

The log-likelihood of a standardized (zero mean and unit variance) skewed-Student
is:

LSkSt = T

{
log Γ

(
υ + 1

2

)
− log Γ

(υ
2

)
− 0.5 log [π (υ − 2)] + log

(
2

ξ + 1
ξ

)
+ log (s)

}

− 0.5

T∑
t=1

{
log σ2

t + (1 + υ) log

[
1 +

(szt +m)2

υ − 2
ξ−2It

]}
, (1.23)

where

It =

{
1 if zt ≥ −ms
−1 if zt < −ms

,

ξ is the asymmetry parameter, υ is the degree of freedom of the distribution,

m =
Γ
(
υ−1

2

)√
υ − 2

√
πΓ
(
υ
2

) (
ξ − 1

ξ

)
,



1.4 Value-at-Risk (VaR) estimation using XlQuant 9

and

s =

√(
ξ2 +

1

ξ2
− 1

)
−m2.

Note that XlQuant does not estimate ξ but log(ξ) to facilitate inference about the

null hypothesis of symmetry (since the skewed-Student equals the symmetric Student

distribution when ξ = 1 or log(ξ) = 0). The estimated value of log(ξ) is reported in

the output under the label “Asymmetry”. See Bauwens and Laurent (2005) for more

details.

1.4 Value-at-Risk (VaR) estimation using XlQuant

In recent years, the tremendous growth of trading activity and the widely publicized

trading loss of well-known financial institutions (see Jorion, 2000, for a brief history

of these events) has led financial regulators and supervisory authorities to favor quan-

titative techniques which appraise the possible loss that these institutions can incur.

Value-at-Risk has become one of the most sought-after techniques as it provides a sim-

ple answer to the following question: with a given probability (say α), what is my

predicted financial loss over a given time horizon? The answer is the VaR at level α,

which gives an amount in the currency of the traded assets (in dollar terms for example)

and is thus easily understandable.

It turns out that the VaR has a simple statistical definition: the VaR at level α for a

sample of returns is defined as the corresponding empirical quantile at α%. Because of

the definition of the quantile, we have that, with probability 1 − α, the returns will be

larger than the VaR. In other words, with probability 1 − α, the losses will be smaller

than the dollar amount given by the VaR.1 From an empirical point of view, the com-

putation of the VaR for a collection of returns thus requires the computation of the

empirical quantile at level α of the distribution of the returns of the portfolio.

In this section, we show how to use XlQuant to predict the VaR and test the ade-

quacy of the selected model in forecasting the VaR of the investigated series.

The long side of the daily VaR is defined as the VaR level for traders having long

positions in the relevant equity index: this is the “usual” VaR where traders incur losses

when negative returns are observed. Correspondingly, the short side of the daily VaR

1Contrary to some wide-spread beliefs, the VaR does not specify the maximum amount that
can be lost.
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is the VaR level for traders having short positions, i.e. traders who incur losses when

stock prices increase.2

In-sample one-step-ahead VaR computed in t− 1 for long trading positions is given

by µt + zασt, for short trading positions it is equal to µt + z1−ασt, with zα being the

left quantile at α% for the assumed distribution and z1−α is the right quantile at α%.3

Similarly, h-step-ahead out-of-sample forecasts of the VaR for long trading po-

sitions are given by µt+h|t + zασt+h|t, for short trading positions it is equal to

µt+h|t + z1−ασt+h|t.

2An asset is short-sold by a trader when it is first borrowed and subsequently sold on the
market. By doing this, the trader hopes that the price will fall, so that he can then buy the asset at
a lower price and give it back to the lender.

3Note that when computing the VaR, µt and σt are evaluated by replacing the unknown pa-
rameters by their maximum likelihood estimates (MLE).



Chapter 2

Multivariate GARCH Models

It is now widely accepted that financial volatilities move together over time across assets

and markets.

Recognizing this feature through a multivariate modeling framework leads to more

relevant empirical models than working with separate univariate models. From a finan-

cial point of view, it opens the door to better decision tools in various areas, such as

asset pricing, portfolio selection, option pricing, hedging, and risk management. In-

deed, unlike at the beginning of the 1990s, several institutions have now developed the

necessary skills to use the econometric theory in a financial perspective.

MGARCH models were initially developed in the late eighties and the first half of

the nineties, and after a period of tranquility in the second half of the nineties, this area

seems to be experimenting again a quick expansion phase. See Bauwens, Laurent, and

Rombouts (2006) for a survey on MGARCH models.

Consider a vector stochastic process {yt} of dimension N × 1. As usual, we con-

dition on the sigma field, denoted by Ωt−1, generated by the past information (here the

yt’s) until time t− 1. We denote by θ a finite vector of parameters and we write:

yt = µt(θ) + εt, (2.1)

where µt(θ) is the conditional mean vector and,

εt = H
1/2
t (θ)zt, (2.2)

where H1/2
t (θ) is a N ×N positive definite matrix. Furthermore, we assume the N ×1

random vector zt to have the following first two moments:

E(zt) = 0

Var(zt) = IN , (2.3)

where IN is the identity matrix of order N . We still have to explain what H1/2
t is

(for convenience we leave out θ in the notation). To make this clear we calculate the

11
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conditional variance matrix of yt:

Var(yt|Ωt−1) = Vart−1(yt) = Vart−1(εt)

= H
1/2
t Vart−1(zt)(H

1/2
t )

′

= Ht. (2.4)

Hence H1/2
t is any N × N positive definite matrix such that Ht is the conditional

variance matrix of yt, e.g. H1/2
t may be obtained by the Cholesky factorization of Ht.

Both Ht and µt depend on the unknown parameter vector θ, which can in most cases

be split into two disjoint parts, one for µt and one for Ht. A case where this is not true

is that of GARCH-in-mean models, where µt is functionally dependent on Ht.

In the next subsections we review different specifications of Ht implemented in

XlQuant.

2.1 Conditional mean specification

Recall that the conditional mean equation is specified as follows:

yt = µt(θ) + εt, (2.5)

where µt(θ) = {µ1t, . . . , µNt} is the conditional mean vector of yt.

ARMA specifications are available for all the MGARCH models described in the

next sections. XlQuant provides diagonal ARMA models in the sense that an ARMA

specification is fitted on each univariate series, i.e.

Ψi (L) (yit − µi) = Θi (L) εit, (2.6)

where L is the lag operator1, Ψi (L) = 1−
n∑
j=1

ψijL
j and Θi (L) = 1 +

s∑
j=1

θijL
j .

2.2 Multivariate GARCH specifications

The models in this category are multivariate extensions of the univariate GARCH

model. When we consider VARMA models for the conditional mean of several time

series the number of parameters increases rapidly. The same happens for multivariate

GARCH models as straightforward extensions of the univariate GARCH model. Fur-

thermore, since Ht is a variance matrix, positive definiteness has to be ensured.

1Recall that Lkyt = yt−k.
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2.2.1 RiskMetrics

J.P.Morgan (1996) uses the exponentially weighted moving average model (EWMA)

to forecast variance and covariances. Practitioners who study volatility processes often

observe that their model is very close to the unit root case. To take this into account,

Riskmetrics defines the variances and covariances as IGARCH type models (Engle and

Bollerslev, 1986):

Definition 1. The RiskMetrics model is defined as:

Ht = (1− λ)εt−1ε
′
t−1 + λHt−1, (2.7)

or alternatively

Ht =
(1− λ)

(1− λ)t−1

t−1∑
i=1

λi−1εt−1ε
′
t−1. (2.8)

The decay factor λ (0 < λ < 1) proposed by Riskmetrics is equal to 0.94 for daily

data and 0.97 for monthly data. The decay factor is not estimated but suggested by

Riskmetrics. In this respect, this model is easy to work with in practice. However,

imposing the same dynamics on every component in a multivariate GARCH model, no

matter which data are used, is difficult to justify.

2.2.2 BEKK models

Engle and Kroner (1995) propose a parametrization for Ht that easily imposes its posi-

tivity, i.e. the BEKK model (the acronym comes from synthesized work on multivariate

models by Baba, Engle, Kraft and Kroner).

Definition 2. The BEKK(p, q) model is defined as:

Ht = C ′C +

q∑
i=1

A′iεt−iε
′
t−iAi +

p∑
j=1

G′iHt−jGj , (2.9)

whereC, theA’s and theG’s matrices are of dimensionN×N butC is upper triangular.

The original BEKK model is a bit more general since it involves a summation over K

terms. We restrict K to be equal to 1. The BEKK model is actually a special case of

the VEC model of Bollerslev, Engle, and Wooldridge (1988).
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The number of ARCH and GARCH parameters in the BEKK(1,1) model isN(5N+

1)/2. To reduce this number, and consequently to reduce the generality, one can impose

a diagonal BEKK model, i.e. Ai and Gj in (2.9) are diagonal matrices.

Another way to reduce the number of parameters is to use a scalar BEKK model,

i.e. Ai and Gj are equal to a scalar times the identity matrix.

XlQuant provides two of these models, i.e. the Diag-BEKK and Scalar-BEKK

model.

The Diag-BEKK and Scalar-BEKK are covariance-stationary if
∑q
i=1 a

2
nn,i +∑p

j=1 g
2
nn,j < 1, ∀n = 1, . . . , N ,

∑q
i=1 ai

2 +
∑p
j=1 gj

2 < 1, respectively. These

conditions are imposed during the estimation.

When it exists, the unconditional variance matrix Σ ≡ E(Ht) of the BEKK model,

is given by

vec(Σ) =

IN2 −
q∑
i=1

(Ai ⊗Ai)′ −
p∑
j=1

(Gj ⊗Gj)′
−1

vec(C ′C), (2.10)

where vec denotes the operator that stacks the columns of a matrix as a vector.

Similar expressions can be obtained for the Diag-BEKK and Scalar-BELL models.

Variance Targeting
What renders most MGARCH models difficult for estimation is their high number of

parameters. A simple trick to ensure a reasonable value of the model-implied uncon-

ditional covariance matrix, which also helps to reduce the number of parameters in the

maximization of the likelihood function, is referred to as variance targeting by Engle

and Mezrich (1996). The conditional variance matrix of the BEKK model (and all its

particular cases), may be expressed in terms of the unconditional variance matrix and

other parameters. Doing so one can reparametrize the model using the unconditional

variance matrix and replace it by a consistent estimator (before maximizing the likeli-

hood).

Applying variance targeting to the BEKK models implies replacing CC ′ by

unvec
[
IN2 −

∑q
i=1(Ai ⊗Ai)′ −

∑p
j=1(Gj ⊗Gj)′

]
Σ̄, where Σ̄ is the unconditional

variance-covariance matrix of ε and unvec is the reverse of the vec operator.2

The difficulty when estimating a BEKK model is the high number of unknown

parameters, even after imposing several restrictions. It is thus not surprising that these

models are rarely used when the number of series is larger than 3 or 4.

2When explanatory variables appear in the BEKK equaton and the variance targeting option
is selected, these variables are simply centered as explaned in Section ??.
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2.2.3 Conditional correlation models

This section collects models that may be viewed as nonlinear combinations of univari-

ate GARCH models. This allows for models where one can specify separately, on the

one hand, the individual conditional variances, and on the other hand, the conditional

correlation matrix. For models of this category, theoretical results on stationarity, er-

godicity and moments may not be so straightforward to obtain as for models presented

in the preceding sections. Nevertheless, they are less greedy in parameters than the

models of the first category, and therefore they are more easily estimable.

The conditional variance matrix for this class of models is specified in a hierarchical

way. First, one chooses a GARCH-type model for each conditional variance. Second,

based on the conditional variances one models the conditional correlation matrix (im-

posing its positive definiteness ∀t).
Bollerslev (1990) proposes a class of MGARCH models in which the conditional

correlations are constant and thus the conditional covariances are proportional to the

product of the corresponding conditional standard deviations. This restriction highly

reduces the number of unknown parameters and thus simplifies estimation.

Definition 3. The CCC model is defined as:

Ht = DtRDt =
(
ρij
√
hiithjjt

)
, (2.11)

where

Dt = diag (h
1/2
11t . . . h

1/2
NNt), (2.12)

hiit can be defined as any univariate GARCH model, and

R = (ρij) (2.13)

is a symmetric positive definite matrix with ρii = 1,∀ i.

R is the matrix containing the constant conditional correlations ρij . The original

CCC model has a GARCH(1,1) specification for each conditional variance in Dt:

hiit = ωi + αiε
2
i,t−1 + βihii,t−1 i = 1, . . . , N. (2.14)

This CCC model contains N(N + 5)/2 parameters. Ht is positive definite if and only

if all the N conditional variances are positive and R is positive definite. The uncon-

ditional variances are easily obtained, as in the univariate case, but the unconditional

covariances are difficult to calculate because of the nonlinearity in (2.11).
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The assumption that the conditional correlations are constant may seem unrealistic

in many empirical applications. Engle (2002) proposes a generalization of the CCC

model by making the conditional correlation matrix time dependent. The model is then

called a dynamic conditional correlation (DCC) model. An additional difficulty is that

the time dependent conditional correlation matrix has to be positive definite ∀t. The

DCC models guarantee this under simple conditions on the parameters.

Definition 4. The DCC model of Engle (2002) is defined as

Ht = DtRtDt, (2.15)

whereDt is defined in (2.12), hiit can be defined as any univariate GARCH model, and

Rt = diag (q
−1/2
11,t . . . q

−1/2
NN,t) Qt diag (q

−1/2
11,t . . . q

−1/2
NN,t), (2.16)

where the N ×N symmetric positive definite matrix Qt = (qij,t) is given by:

Qt = (1− α− β)Q+ αut−1u
′
t−1 + βQt−1, (2.17)

with ut = (u1t, . . . , uNt)
′, where uit = εit/

√
hiit. Q is the N × N unconditional

variance matrix of ut, and α and β are nonnegative scalar parameters satisfying α+β <

1.

The elements of Q can be estimated or alternatively set to their empirical counter-

part to render the estimation even simpler.

Interestingly, CCC and DCC models can be estimated consistently in two steps (see

Section 2.3.2) which makes this approach feasible when N is high. Of course, when N

is large, the restriction of common dynamics gets tighter, but for large N the problem

of maintaining tractability also gets harder.

2.3 Estimation

In the previous section we have defined existing specifications of conditional variance

matrices that enter the definition either of a data generating process (DGP) or of a model

to be estimated. In Section 2.3.1, we discuss maximum likelihood (ML) estimation

of these models, and in Section 2.3.2 we explain a two-step approach for estimating

conditional correlation models. Finally, we review briefly the variance targeting issue

in Section 2.3.3.



2.3 Estimation 17

2.3.1 Maximum Likelihood

Suppose the vector stochastic process {yt} (for t = 1, . . . , T ) is a realization of a DGP

whose conditional mean, conditional variance matrix and conditional distribution are

respectively µt(θ0), Ht(θ0) and p(yt|ζ0,Ωt−1), where ζ0 = (θ0 η0) is a r-dimensional

parameter vector and η0 is the vector that contains the parameters of the distribution of

the innovations zt (there may be no such parameter). Importantly, to justify the choice

of the estimation procedure, we assume that the model to be estimated encompasses the

true formulations of µt(θ0) and Ht(θ0).

The procedure most often used in estimating θ0 involves the maximization of a

likelihood function constructed under the auxiliary assumption of an i.i.d. distribution

for the standardized innovations zt. The i.i.d. assumption may be replaced by the

weaker assumption that zt is a martingale difference sequence with respect to Ωt−1, but

this type of assumption does not translate into the likelihood function. The likelihood

function for the i.i.d. case can then be viewed as a quasi-likelihood function.

Consequently, one has to make an additional assumption on the innovation process

by choosing a density function, denoted g(zt(θ)|η) where η is a vector of nuisance pa-

rameters. The problem to solve is thus to maximize the sample log-likelihood function

LT (θ, η) for the T observations (conditional on some starting values for µ0 and H0),

with respect to the vector of parameters ζ = (θ, η), where

LT (ζ) =

T∑
t=1

log f(yt|ζ,Ωt−1), (2.18)

with

f(yt|ζ,Ωt−1) = |Ht|−1/2g
(
H
−1/2
t (yt − µt)|η

)
, (2.19)

and the dependence with respect to θ occurs through µt and Ht. The term |Ht|−1/2 is

the Jacobian that arises in the transformation from the innovations to the observables.

The most commonly employed distribution in the literature is the multivariate nor-

mal, uniquely determined by its first two moments (so that ζ = θ since η is empty). In

this case, the sample log-likelihood is:

LT (θ) = −1

2

T∑
t=1

[
N log(2π) + log | Ht | +(yt − µt)

′
H−1
t (yt − µt)

]
. (2.20)

It is well-known that the normality of the innovations is rejected in most applications

dealing with daily or weekly data. In particular, the kurtosis of most financial asset

returns is larger than three, which means that they have too many extreme values to be
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normally distributed. Moreover, their unconditional distribution has often fatter tails

than what is implied by a conditional normal distribution: the increase of the kurtosis

coefficient brought by the dynamics of the conditional variance is not usually sufficient

to match adequately the unconditional kurtosis of the data.

However, as shown by Bollerslev and Wooldridge (1992), a consistent estimator of

θ0 may be obtained by maximizing (2.20) with respect to θ even if the DGP is not condi-

tionally Gaussian. This estimator, called (Gaussian) quasi-maximum likelihood (QML)

or pseudo-maximum likelihood (PML) estimator, is consistent provided the conditional

mean and the conditional variance are specified correctly. Jeantheau (1998) proves the

strong consistency of the Gaussian QML estimator of multivariate GARCH models. He

also provides sufficient identification conditions for the CCC model. See Gourieroux

(1997) for a detailed description of the QML method in a MGARCH context and its

asymptotic properties. For these reasons and as far as the purpose of the analysis is to

estimate consistently the first two conditional moments, estimating MGARCH models

by QML is justified.

Nevertheless, in certain situations it is desirable to search for a better distribution for

the innovation process. For instance, when one is interested in obtaining density fore-

casts, (see Diebold, Gunther, and Tay, 1998, in the univariate case and Diebold, Hahn,

and Tay, 1999, in the multivariate case) it is natural to relax the normality assumption,

keeping in mind the risk of inconsistency of the estimator (see Newey and Steigerwald,

1997).

A natural alternative to the multivariate Gaussian density is the Student density,

see Harvey, Ruiz, and Shephard (1992) and Fiorentini, Sentana, and Calzolari (2003).

The latter has an extra scalar parameter, the degrees of freedom parameter, denoted ν

hereafter. When this parameter tends to infinity, the Student density tends to the normal

density. When it tends to zero, the tails of the density become thicker and thicker. The

parameter value indicates the order of existence of the moments, e.g. if ν = 2, the

second order moments do not exist, but the first order moments exist. For this reason,

it is convenient (although not necessary) to assume that ν > 2, so that Ht is always

interpretable as a conditional covariance matrix. Under this assumption, the Student

density can be defined as:

g(zt|θ, ν) =
Γ
(
ν+N

2

)
Γ
(
ν
2

)
[π(ν − 2)]

N
2

[
1 +

z′tzt
ν − 2

]−N+ν
2

, (2.21)

where Γ(.) is the Gamma function. Note that in this case η = ν. The density function

of yt is easily obtained by applying (2.19).
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2.3.2 Two-step estimation

A useful feature of the CCC and DCC models presented in Section 2.2.3 is that they can

be estimated consistently using a two-step approach. Engle and Sheppard (2001) show

that in the case of aDCC model, the log-likelihood can be written as the sum of a mean

and volatility part (depending on a set of unknown parameters θ∗1) and a correlation part

(depending on θ∗2).

Indeed, recalling that the conditional variance matrix of a DCC model can be ex-

pressed as Ht = DtRtDt, an inefficient but consistent estimator of the parameter θ∗1
can be found by replacing Rt by the identity matrix in (2.20). In this case the quasi-

loglikelihood function corresponds to the sum of loglikelihood functions of N univari-

ate models:

QL1T (θ∗1) = −1

2

T∑
t=1

N∑
i=1

[
log(2π) + log(hiit) +

(yit − µit)2

hiit

]
. (2.22)

Given θ∗1 and under appropriate regularity conditions, a consistent, but inefficient, esti-

mator of θ∗2 can be obtained by maximizing:

QL2T (θ∗2 |θ∗1) = −1

2

T∑
t=1

(
log |Rt|+ u′tR

−1
t ut

)
, (2.23)

where ut = D−1
t (yt − µt).

The sum of the likelihood functions in (2.22) and (2.23) plus half of the total sum of

squared standardized residuals (
∑
t u
′
tut/2, which is almost equal to NT/2), is equal

to the log-likelihood in (2.20). It is thus possible to compare the log-likelihood of the

two-step approach with that of the one-step approach and of other models.

Engle and Sheppard (2001) explain that the estimators θ̂∗1 and θ̂∗2 , obtained by max-

imizing (2.22) and (2.23) separately, are not fully efficient (even if zt is normally dis-

tributed) since they are limited information estimators.

XlQuant implements the two-step approach described above (for the CCC and DCC

models) but also allows the estimation of these model in one-step. Note that when

choosing the one-step approach, the model is first estimated with the two-step approach

to get accurate starting values.

Importantly, XlQuant allows the selection of non-standard ARCH models for the

conditional variances (like APARCH, GJR, etc.) and an ARMA specification for the

conditional mean.



20 Chapter 2 Multivariate GARCH Models

2.3.3 Variance Targeting

We have seen that what renders most MGARCH models difficult for estimation is their

high number of parameters. A simple trick to ensure a reasonable value of the model-

implied unconditional covariance matrix, which also helps to reduce the number of

parameters in the maximization of the likelihood function, is referred to as variance

targeting by Engle and Mezrich (1996). For example, in the VEC model (and all its

particular cases), the conditional variance matrix may be expressed in terms of the un-

conditional variance matrix (see Section 2.2.2) and other parameters. Doing so one can

reparametrize the model using the unconditional variance matrix and replace it by a

consistent estimator (before maximizing the likelihood). When doing this, one should

correct the covariance matrix of the estimator of the other parameters for the uncertainty

in the preliminary estimator. In DCC models, this can also be done with the constant

matrix of the correlation part, e.g. Q in (2.17). In this case, the two-step estimation

procedure explained in Section 2.3.2 becomes a three-step procedure.
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